- Languages: Learn R, Python, and SQL
- Tools: Learn how to use data mining and visualization tools
- Textbooks: Read introductory textbooks to understand the fundamentals
- Education: watch webinars, take courses, and consider a certificate or a degree in data science
- Data: Check available data resources and find something there
- Competitions: Participate in data mining competitions
- Interact with other data scientists, via social networks, groups, and meetings
1. Learning Languages
Recent KDnuggets Poll found that the most popular languages for data miningare R, Python, and SQL.
There are many resources for each, for example
- Free e-book on Data Science with R
- Getting Started With Python For Data Science
- Python for Data Analysis: Agile Tools for Real World Data
- An indispensable Python : Data sourcing to Data science.
- W3 Schools Learning SQL
2. Tools: Data Mining, Data Science, and Visualization Software
There are many data mining tools for different tasks, but it is best to learn using a data mining suite which supports the entire process of data analysis.
However, for many analytics jobs you need to know SAS, which is the leading commercial tool and widely used.
Other popular Analytics and Data Mining Software include MATLAB, StatSoft STATISTICA, Microsoft SQL Server, Tableau, IBM SPSS Modeler, and Rattle.
Visualization is an essential part of any data analysis - learn how to use Microsoft Excel (good for many simpler tasks), R graphics, (especiallyggplot2), and also Tableau - an excellent package for visualization. Other good visualization tools include TIBCO Spotfire and Miner3D.
3. Textbooks
There are many data mining and data science textbooks available, but you can check these
- Data Mining and Analysis: Fundamental Concepts and Algorithms, free PDF download (draft), by Mohammed Zaki and Wagner Meira Jr.
- Data Mining: Practical Machine Learning Tools and Techniques, by Ian Witten, Eibe Frank, and Mark Hall, from the authors of Weka, and using Weka extensively in examples.
- The Elements of Statistical Learning, Data Mining, Inference, and Predictionm, by Trevor Hastie, Robert Tibshirani, Jerome Friedman - great introduction for mathematically oriented
- LIONbook: Learning and Intelligent Optimization, by Roberto Battiti and Mauro Brunato, freely available on the web, chapter by chapter.
- Mining of Massive Datasets Book, by A. Rajaraman, J. Ullman.
- StatSoft Electronic Statistics Textbook™ (free), includes many data mining topics
4. Education: Webinars, Courses, Certificates, and Degrees
You can start by watching some of the many free webinars and webcasts on latest topics in Analytics, Big Data, Data Mining, and Data Science.
There are also many online courses, short and long, many of them free - seeKDnuggets online education directory.
Check in particular these courses:
- Machine Learning, at Coursera, taught by Andrew Ng
- Learning from Data at edX, taught by Caltech professor Yaser Abu-Mostafa,
- Open Online Course in Applied Data Science, from Syracuse iSchool
- Data Mining with Weka, free online course.
- check also free online slides from my Data Mining Course, a semester-long introductory course in Data Mining.
Finally, consider getting Certificates in Data Mining, and Data Science or advanced degrees, such as MS in Data Science - see KDnuggets directory forEducation in Analytics, Data Mining, and Data Science.
5. Data
You will need data to analyze - see KDnuggets directory of Datasets for Data Mining, including
- Government, Federal, State, City, Local and public data sites and portals
- Data APIs, Hubs, Marketplaces, Platforms, Portals, and Search Engines.
- Free Public Datasets
6. Competitions
Again, you will best learn by doing, so participate in Kaggle competitions - start with beginner competitions, such as Predicting Titanic Survival using Machine Learning
7. Interact: Meetings, Groups, and Social Networks
You can join many peer groups - see Top 30 LinkedIn Groups for Analytics, Big Data, Data Mining, and Data Science.
AnalyticBridge is an active community for Analytics and Data Science.
You can attend some of the many Meetings and Conferences on Analytics, Big Data, Data Mining, Data Science, & Knowledge Discovery.
Cr: http://www.kdnuggets.com/meetings/index.html
ไม่มีความคิดเห็น:
แสดงความคิดเห็น